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Model 1

Heat Equation

Module name: HeatSolve

Module subroutines: HeatSolver

Module authors: Juha Ruokolainen, Peter Raback, Matthias Zenker
Document authors: Juha Ruokolainen, Ville Savolainen, Peter Raback
Document edited: July 29th 2002

1.1 Introduction

Heat equation results from the requirement of energy conservation. In addition the Fourier’s law is used to
model the heat conduction. The linearity of the equation may be ruined by temperature dependent thermal
conductivity, or by heat radiation.

1.2 Theory

1.2.1 Governing Equations

The incompressible heat equation is expressed as

. (g+(ﬁ-V)T> _ V. (KVT) =73+ ph, (1.1)

where p is the density, ¢, the heat capacity at constant pressure, 7’ the temperature, i the convection velocity,
k the heat conductivity and / is source of heat. The term T : £ is the frictional viscous heating, which is
negligible in most cases. For Newtonian fluids, the viscous part of the stress tensor is

7 = 2, (1.2)

where Z the linearized strain rate tensor.

Eq.1.1 applies also for solids, setting & = 0. For solids, conduction may be anisotropic and the conduc-
tivity a tensor.

For compressible fluids, the heat equation is written as

ot

where c, is the heat capacity at constant volume. The density needs to be calculated from the equation of
state, e.g., perfect gas law. More information is given in the chapter describing the Navier-Stokes equation.

The Elmer heat equation module is capable of simulation heat transfer by conduction, convection, and
diffuse gray radiation. Also a phase change model is included. Couplings to other modules include, convec-
tion by fluid flow, frictional heating (modules providing flow fields), and resistive heating (modules providing
magnetic and/or electric fields).

T _
ey (+a‘-VT>—V-(WT):—pv.ﬁJrT;Hpm (1.3)

CSC —IT Center for Science (cc



1. Heat Equation 11

1.2.2 Arbitrary Lagrangian-Eulerian (ALE) coordinates

For problems involving a deforming mesh the transient heat equation must be solved using Arbitrary Lagrangian-
Eulerian (ALE) frame of reference. Assume that the mesh velocity is ¢. Then the convective term yields

pey (i = &) - V)T (1.4)

1.2.3 Phase Change Model

Elmer has an internal fixed grid phase change model. Modelling phase change is done by modifying the
definition of heat capacity according to whether a point in space is in solid or liquid phase or in a *'mushy’
region. The choice of heat capacity within the intervals is explained in detail below.

This type of algorithm is only applicable, when the phase change occurs within finite temperature inter-
val. If the modelled material is such that the phase change occurs within very sharp temperature interval,
this method might not be appropriate.

For the solidification phase change model Elmer uses, we need enthalpy. The enthalpy is defined to be

T of
H(T) = /0 <pcp + pLa/\> dA, (1.5)

where f(T) is the fraction of liquid material as a function of temperature, and L is the latent heat. The
enthalpy-temperature curve is used to compute an effective heat capacity, whereupon the equations become
identical to the heat equation. There are two ways of computing the effective heat capacity in Elmer:

oOH
Cpeff = T (1.6)
and 12
VH-VH
%ﬁ—<VPVT) ' 17

The former method is used only if the local temperature gradient is very small, while the latter is the preferred
method. In transient simulations a third method is used, given by

OH /ot
Cpeff = 8T/8t (18)

1.2.4 Additional Heat Sources

Frictional heating is calculated currently, for both incompressible and compressible fluids, by the heat source
hy=2uz : €. (1.9)

In case there are currents in the media the also the the resistive heating may need to be considered. The
Joule heating is then given by

=

B, = 17 (1.10)
g

In the above equations, B and E are the magnetic and electric fields, respectively. The current density Jis
defined as . . B
J=0o(E+1x B). (1.11)

In modeling biological tissue perfused with blood acting as heat sink an additional heat source term of
the Pennes’ Bioheat equation is needed. The term is

hy = copyw(Ty, — T) (1.12)

where ¢y, is the specific heat capacity, p, the density, and T}, the temperature of the blood. The perfusion rate
w is the volume of blood flowing through a unit volume of tissue per second. This additional source term is
modeled so that the part including 7T’ is treated implicitely for better convergence. Even though the model
was written for the biological application in mind the additional heat source may find also other uses.

CSC - IT Center for Science (cc



1. Heat Equation 12

1.2.5 Boundary Conditions

For temperature one can apply boundary conditions and have either temperature or heat flux prescribed.
Dirichlet boundary condition (temperature is prescribed) reads as

T="T,. (1.13)

The value of T} can be constant or a function of time, position or other variables.
Heat flux depending on heat transfer coefficient o and external temperature 7., may be written as
oT
_kain :OZ(T_Text) (114)
Both variables o and T, can be constant or functions of time, position or other variables. If the heat transfer
coefficient « is equal to zero, it means that the heat flux on a boundary is identically zero. The Neumann
boundary condition —k9T/On = 0 is also used in a symmetry axis in 2D, axisymmetric or cylindrical

problems.
Heat flux can consist of idealized radiation whereupon
or
—ko = oe(T* —TL,). (1.15)

Above, o is the Stefan-Boltzmann constant and ¢ the surface emissivity. The emissivity and the external
temperature can again be constant or functions of time, position, or other variables.
If the surface k is receiving radiation from other surfaces in the system, then the heat flux reads as

Ty,
- kk% = O'Ek(T];l —

1
Ak&'k

N
Z GaneiTHA), (1.16)
i=1

where the subscripts ¢ and k refer to surfaces ¢ and k, and the parameters A; and Ay, to the specific surface
areas. The factors GG;, are Gebhardt factors, and N represents the total number of radiating surfaces present
in the system. Emissivities are assumed to be constant on each surface.

The heat equation is nonlinear when radiation is modelled. The nonlinear term in the boundary condition
(1.15) can be linearized as

T* — Ty ~ (T3 + T T? + T2 T + T3 (T — Texe), (1.17)

where 7 is the temperature from the previous iteration.
One may also give an additional heat flux term as
or

~ha-=q. (1.18)

1.3 Keywords

Constants

Stefan Boltzmann Real
The value of the Stefan-Boltzmann constant needed for thermal radiation.

Simulation
The simulation section gives the case control data:

Simulation Type String
Heat equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

CSC —IT Center for Science (cc



1. Heat Equation 13

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta= 0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson, and
Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String Heat Equation
The name of the equation.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations is small enough

[T — Tia|| < el|T3]]

where ¢ is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the it-
eration count is met, it will switch the iteration type instead. In the heat equation the Picard
iterations means that the radiation term is factorized to linear and third-power terms.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

|Ts = Tia || < €l T3],

where ¢ is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

T, = XT; + (1 = \)T;_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

|T; — Tial| < el|T3],

where € is the value given with this keyword.

CSC —IT Center for Science [@)BY-nD |



1. Heat Equation 14

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the heat
equation with a convection term. If this flag is set to False RFB (Residual Free Bubble)
stabilization is used instead (unless the next flag Bubbles is set to False in a problem with
Cartesian coordinate system). If convection dominates stabilization must be used in order to
successfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. Note that in this case, the results might easily be nonsensical.

Smart Heater Control After Tolerance Real
The smart heater control should not be activated before the solution has somewhat settled. By
default the smart heater control is set on when the Newtonian linearization is switched on for the
temperature equation. Sometimes it may be useful to have more stringent condition for turning
on the smart heater control and then this keyword may be used to give the tolerance.

Apply Limiter Logical
The generic soft limiters may be applied for the heat equation equation. They could for example,
account for the effects of phase change under circumstances where it may be assumed that the
temperature does not go over the phase change temperature. With this flag active the minimum
and maximum limiters are accounted.

In some cases the geometry or the emissivities of the radiation boundaries change. This may require
the recomputation of the view factors and Gebhardt factors. For that purpose also dynamic computa-
tion of the factors is enabled and it is controlled by the keywords below. The radiation factors are also
automatically computed if no files for the factors are given allthough radiation boundaries exist.

Update View Factors Logical
The recomputation of the view factors is activated by setting the value of this flag to True.
False is the default.

Update Gebhardt Factors Logical
If the emissivities depend on the solution the Gebhardt factors may need to be recomputed. This
is activated by setting giving this flag value True. False is the default.

Minimum View Factor Real
This keyword determines the cut-off value under which the view factors are omitted. Neglecting
small values will not only save memory but also will make the matrix used for solving the
Gabhardt factors less dense. This consequently will enable more efficient sparse matrix strategies
in solving the Gebhardt factors. The value for this parameter might be of the order 10e-8.

Minimum Gebhardt Factor Real
The Gebhardt factors make part of matrix dense. By neglecting the smallest Gebhardt factors
the matrix structure for the heat equation may become significantly sparser and thus the solution
time may drop. The value for this parameter might also be of the order 10e-8.

Implicit Gebhardt Factor Fraction Real
In computing heat transfer problems with radiation in an implicit manner the matrix structure
becomes partially filled. This affects the performance of the linear equation solvers and also
increases the memory requirements. On the other hand explicit treatment of radiation slows
down the convergence significantly. This keyword allows that the largest Gebhardt factors are
treated in an implicit manner whereas the smallest are treated explicitely. The value should lie in
between zero (fully explicit) and one (fully implicit).

Matrix Topology Fixed Logical
If the Gebhardt factors change the matrix structure of the heat equation may also have to be
changed unless this flag is set to False. Then all factors that do not combine with the matrix
structure are omitted.

CSC —IT Center for Science (cc



1. Heat Equation 15

View Factors Geometry Tolerance Real
The view factors take a lot of time to compute. Therefore during the iteration a test is performed
to check whether the geometry has changed. If the relative maximum change in the coordinate
values is less than the value given by this parameter the view factors are not recomputed and the
old values are used.

View Factors Fixed After Iterations Integer
Sometimes the iteration changes the geometry of the radiation boundaries as an unwanted side-
effect. Then the geometry on the radiation boundary may be set fixed after some iterations. In
practice this is done by adding suitable Dirichlet conditions in the boundary conditions.

Gebhardt Factors Fixed After Iterations Integer
Sometimes the emissivity depends on temperature but recomputing it every time may be costly.
By this keyword the recomputation may be limited to the given number of visits to the heat
equation solver.

View Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of view factors is omitted. Typically this should be defined by a geometry tolerance but
if the temperature solver follows the changes in geometry this may be a good control as well.

Gebhardt Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of Gebhardt factors is omitted. The temperature dependence of emissivity is typically
not so strong that small temperature changes would result to a need to recompute the Gebhardt
factors as well.

Gebhardt Factors Solver Full Logical
If the view factor matrix is relatively sparse it will make sense to use a sparse matrix equation
for solving the Gebhardt factors. This flag may be used if a full matrix should be desired.

Gebhardt Factors Solver Iterative Logical
If the Gebhardt factors are solved from a sparse matrix equation also the type of solver may
be selected. The default is direct umfpack solver. Sometimes the memory usage may be a
problem or the direct strategy simply not efficient enough. Then an iterative cgs solver may be
used instead.

Viewfactor Divide Integer
For axisymmetric view factor computation gives the number of divisions for each element. The
default is 1.

Viewfactor Combine Elements Logical
There may be a significant amount of saved time if in the axisymmetric view factor computation
the elements that are aligned and share a common node are united. The shadowing loop will then
only be performed over these macroelements.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies.

Heat Equation String
If set to True, solve the heat equation.

Convection String
The type of convection to be used in the heat equation, one of: None, Computed, Constant.

Phase Change Model String
One of: None, Spatial 1, Spatial 2 and Temporal. Note that when solidification
is modelled, the enthalpy-temperature- and viscosity-temperature-curves must be defined in the
material section.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keywords are recognized by the base solver:
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1. Heat Equation 16

Heat Source Real
A heat source h for the heat equation may be given with this keyword. Note that by default the
heating is given per unit mass, not unit volume.

Friction Heat Logical
Currently redundant keyword, the frictional heating h; is automatically added.

Joule Heat Logical
If set True, triggers use of the electromagnetic heating. This keywords accouns for the heating
of many different solvers; electrostatics, magnetostatics, and induction equation.

Smart Heater Control Logical
Sometimes the predescribed heat source does not lead to the desired temperature. Often the
temperature is controlled by a feedback and therefore a similar heater control in the simulation
may give more realistic results. This flag makes sets the smart heater control on for the given
body force.

Integral Heat Source Real
This keyword activates a normaliazation of the Heat Source so that the integral heating power
is the desired objective.

Temperature Lower Limit Real
The lower limit for temperature that is enforced iteratively when the soft limters are applied.

Temperature Upper Limit Real
The upper limit for temperature that is enforced iteratively when the soft limters are applied.

There are four optional keywords related to the Pennes’ bioheat equation term that model the perfusion
process.

Perfusion Rate Real
The rate of the perfusion w. Activates the perfusion process.
Perfusion Reference Temperature Real
Temperature T}, of the perfusion fluid.

Perfusion Density Real
Density py, of the perfusion fluid.

Perfusion Heat Capacity Real
Heat capacity c¢;, of the perfusion fluid.

Initial Condition ic id
The initial condition section may be used to set initial values for temperature.

Temperature Real

Material mat id

The material section is used to give the material parameter values. The following material parameters
may be effective when heat equation is solved.

Density Real
The value of density is given with this keyword. The value may be constant, or variable. For the
compressible flow, the density is computed internally, and this keyword has no effect.
Enthalpy Real
Note that, when using the solidification modelling, an enthalpy-temperature curve must be given.
The enthalpy is derived with respect to temperature to get the value of the effective heat capacity.
Viscosity Real
Viscosity is needed if viscous heating is taken into account. When using the solidification mod-

elling, a viscosity-temperature curve must be given. The viscosity must be set to high enough
value in the temperature range for solid material to effectively set the velocity to zero.
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1. Heat Equation 17

Heat Capacity Real
The value of heat capacity in constant pressure ¢, is given with this keyword. The value may
be constant, or variable. For the phase change model, this value is modified according to rules
given in the theory section.

Heat Conductivity Real
The value of heat conductivity k is given with this keyword. The value may be a constant or
variable.

Convection Velocity i Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Compressiblity Model Real
This setting may be used to set the compressibilty model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter there may be mechanical work
performed by the heating. Then also the settings Reference Pressure and Specific
Heat Ratio must also be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found in the radiating boundary only then will it be looked at the material properties of the
parent elements. Often locating the emissivity here makes the case definition more simple.

Transmissivity Real
For the diffuse gray radiation model also transmissivity of the surface may be provided. It gives
the part of the energy that is lost as it passes through the wall. By default transmissivity is zero.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. In
heat equation we may set the temperature directly by Dirichlet boundary conditions or use different
flux conditions for the temperature. The natural boundary condition of heat equation is zero flux
condition.

Temperature Real

Heat Flux BC TLogical
Must be set to True, if heat flux boundary condition is present.

Heat Flux Real
A user defined heat flux term.

Heat Transfer Coefficient Real
Defines the parameter « in the heat flux boundary condition of the type

oT
—k— =a(T — Teyt).
an ( ezt)
External Temperature Real
Defines the variable for ambient temperature 7, in the previous equation.

Radiation String
The type of radiation model for this boundary, one of: None, Idealized, Diffuse Gray.
Note that, when using the diffuse gray radiation model, the file containing the Gebhardt factors
must be given in the simulation section.
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1. Heat Equation 18

Radiation Boundary Integer
If there are many closures with radiation boundary conditions that do not see each other the
view factors may be computed separately. This keyword is used to group the boundaries to
independent sets. The default is one.

Radiation Boundary Open Logical
The closures may be partially open. Then no normalization of the view factors is enforced. The
missing part of the radiation angle is assumed to be ideal radiation. Therefore if this option is
enforced also the parameter External Temperature must be given.

Radiation External Temperature Real
In case the external temperature related to the heat transfer coefficient is different than that related
to the radiation they cannot be given with the same keyword. For this purpose an alternative
keyword is provided for radiation problems. This is used instead if it present.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found here it will be searched at the parant elements.

Transmissivity Real
If the transmissivity is not found here it will be searched at the parant elements.

Radiation Target Body Integer
This flag may be used to set the direction of the outward pointing normal. This is used when
computing viewfactors. A body identification number must be given. The default is that the
normal points to less dense material or outward on outer boundaries.

Smart Heater BoundaryLogical If the smart heater is activated the point for monitoring the tempera-
ture is the point with maximum x-coordinate on the boundary where this keyword is set True.
Alternatively the logical variable Phase Change is looked for.

Smart Heater TemperatureReal The desired temperature for the smart heater system is set by this
keyword. Alternatively the real variable Melting Point may be used.

CSC —IT Center for Science (cc



Model 2

Navier-Stokes Equation

Module name: FlowSolve

Module subroutines: FlowSolver

Module authors: Juha Ruokolainen

Document authors: Juha Ruokolainen, Peter Raback
Document created: 2002

Document edited: 18.5.2011

2.1 Introduction

In solid and liquid materials heat transfer and viscous fluid flow are governed by heat and Navier-Stokes
equations, which can be derived from the basic principles of conservation of mass, momentum and energy.
Fluid can be either Newtonian or non-Newtonian. In the latter case the consideration in Elmer is limited to
purely viscous behaviour with the power-law model.

In the following we present the governing equations of fluid flow, heat transfer and stresses in elastic
material applied in Elmer. Also the most usual boundary conditions applied in computations are described.

2.2 Theory
The momentum and continuity equations can be written as
o _ -
p(u+(ﬁ~V)ﬂ)V~0p, 2.1)
ot
and
dp . ,
5 +(@-Vp | +p(V-4) =0, (2.2)
where G is the stress tensor. For Newtonian fluids
_ - 2 = =
T =2uE — g,u(v i)l —pl, (2.3)

where p is the viscosity, p is the pressure, I the unit tensor and Z the linearized strain rate tensor, i.e.

1 8”1' an
"= = . 24
&ij 2 (81‘] + 8l‘l> ( )
The density of an ideal gas depends on the pressure and temperature through the equation of state
p
= 2.5
P= 7T 2.5)
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2. Navier-Stokes Equation 20

where R is the gas constant:

R = 5 Cp- (2.6)
The specific heat ratio -y is defined as
— 2.7)
Cy

where ¢, and ¢, are the heat capacities in constant pressure and volume, respectively. The value of v depends
solely on the internal molecular properties of the gas.
An imcompressibe flow is characterized by the condition p=constant, from which it follows that

V-d=0. (2.8)

Enforcing the constraint (2.8) in (2.1), (2.2) and (2.3), the equations reduce to the Navier-Stokes equations

p(G+@W)0) VB + T = oF. 29)
Vi = 0. (2.10)

Compressible flows are modelled by the equations (2.1)-(2.7). Then, it is possible to replace the state equa-
tion (2.5) by
1
p=—3p, (2.11)
C

where ¢ = ¢(p, T, .. .) is the speed of sound. The equation (2.11) can be used with liquid materials as well.

Most commonly the term p f represents a force due to gravity, in which case the vector f is the gravita-
tional acceleration. It can also represent, for instance, the Lorentz force when magnetohydrodynamic effects
are present.

For isothermal flows the equations (2.9) and (2.10) desrcibe the system in full. For thermal flows also
the heat equation needs to be solved.

For thermal incompressible fluid flows we assume that the Boussinesq approximation is valid. This
means that the density of the fluid is constant except in the body force term where the density depends
linearly on temperature through the equation

p=po(l—pB(T —Tp)), (2.12)

where 3 is the volume expansion coefficient and the subscript O refers to a reference state. Assuming that
the gravitational acceleration g is the only external force, then the force poG(1 — B(T — Tp)) is caused in the
fluid by temperature variations. This phenomenon is called Grashof convection or natural convection.

One can choose between transient and steady state analysis. In transient analysis one has to set, besides
boundary conditions, also initial values for the unknown variables.

2.2.1 Boundary Conditions

For the Navier-Stokes equation one can apply boundary conditions for velocity components or the tangential
or normal stresses may be defined.
In 2D or axisymmetric cases the Dirichlet boundary condition for velocity component w; is simply

u; = ul. (2.13)

?

A value uf’ can be constant or a function of time, position or other variables. In cylindrical cases the Dirichlet
boundary condition for angular velocity u? is

u = w, (2.14)

where w is the rotation rate.
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2. Navier-Stokes Equation 21

In axisymmetric geometries one has to set u,, = 0 and Ju, /Or = 0 on the symmetry axis.
If there is no flow across the surface, then

i-i=0 (2.15)

where 77 is the outward unit normal to the boundary.
Surface stresses can be divided into normal and tangential stresses. Normal stress is usually written in
the form
~

n= = — Da 2.16
o A (2.16)

where 7 is the surface tension coefficient, R the mean curvature and p, the atmospheric (or external) pres-
sure. Tangential stress has the form
d. =V, 2.17)

where V is the surface gradient operator.

The coefficient y is a thermophysical property depending on the temperature. Temperature differences
on the surface influence the transport of momentum and heat near the surface. This phenomenon is called
Marangoni convection or thermocapillary convection. The temperature dependence of the surface tension
coefficient can be approximated by a linear relation:

v =1 —=HT —1Tp)), (2.18)

where ¥ is the temperature coefficient of the surface tension and the subscript 0 refers to a reference state.
If a Boussinesq hypothesis is made, i.e., the surface tension coefficient is constant except in (2.17) due to
(2.18), the boundary condition for tangential stress becomes

Gy = 97V, T. (2.19)

In equation (2.16) it holds then that v = ~y. The linear temperature dependence of the surface tension
coefficient is naturally only one way to present the dependence. In fact, the coefficient v can be any user
defined function in Elmer. One may also give the force vector on a boundary directly as in

Fi=4. (2.20)

2.2.2 Linearization

As is well known, the convective transport term of the Navier-Stokes equations and the heat equation is a
source of both physical and numerical instability. The numerical instability must be compensated somehow
in order to solve the equations on a computer. For this reason the so called stabilized finite element method
([2],[1]) is used in Elmer to discretize these equations.

The convection term of the Navier-Stokes equations is nonlinear and has to be linearized for computer
solution. There are two linearizations of the convection term in Elmer:

—

(@ V)i~ U-V)i (2.21)

and
(@-V)ir (U-V)i+ (@ VU—U-V)U, (2.22)

where 1 is the velocity vector from the previous iteration. The first of the methods is called Picard iteration
or the method of the fixed point, while the latter is called Newton iteration. The convergence rate of the
Picard iteration is of first order, and the convergence might at times be very slow. The convergence rate of
the Newton method is of second order, but to succesfully use this method, a good initial guess for velocity
and pressure fields is required. The solution to this problem is to first take a couple of Picard iterations, and
switch to Newton iteration after the convergence has begun.
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2. Navier-Stokes Equation 22

2.2.3 Arbitrary Lagrangian-Eulerian (ALE) coordinates

For problems involving deformations the transient Navier-Stokes equation must be solved using Arbitrary
Lagrangian-Eulerian (ALE) frame of reference. Assume that the mesh velocity during the nonlinear iteration
is ¢. Then the convective term yields

(G—2)-V)ir (U-2)- V)i (2.23)
This results naturally to Picard iteration. For Newton iteration the additional two terms remains the same
since the mesh velocities in there cancel each other.

2.2.4 Non-newtonian Material Models

There are several non-newtonian material models. All are functions of the strainrate 7. The simple power
law model has a problematic behavior at low shear rates. The more complicated models provide a smooth
transition from low to high shearrates.

Power law
. n_l . . .
0y if 4 > 4o,
n=" T (2.24)
Yo Y <o
where 7)., is constant, g is the critical shear rate, and n is the viscosity exponent.
Carreau-Yasuda L
N="Ns+An1l+(cy)?) 7, (2.25)

where 7). is the high shearrate viscosity ¥ — oo provided that n < 1. For shearrates approaching zero the
viscosity is 79 = oo + An. An is thus the maximum viscosity difference between low and high shearrate.
This model recovers the plain Carreau model when the Yasuda exponent y = 2.

Cross A
N
= , 2.26
1= e+ T (2.26)
where again 7)., is the high shearrate viscosity.
Powell-Eyring
asinh(c)

0= oo + Ancé”). (227)

All the viscosity models can be made temperature dependent. The current choice is to multiply the
suggested viscosity with a factor exp(d(1/(T, + T) — 1/T})), where d is the exponential factor, T}, is
temperature offset (to allow using of Celcius), and 7;. the reference temperature for which the factor becomes
one.

2.2.5 Flow in Porous Media

A simple porous media model is provided in the Navier-Stokes solver. It utilizes the Darcy’s law that states
that the flow resistance is proportinal to the velocity and thus the modified momentum equation reads
ou . = 7
p a-k(u-V)u —V.-g+ri=pf, (2.28)
where 7 is the porous resistivity which may also be an orthotropic tensor. Usually the given parameter is
permeability which is the inverse of the resistivity as defined here. No other features of the porous media
flow is taken into consideration. Note that for large value of r only the bubble stabilization is found to work.
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2.2.6 Rotating coordinates

In rotating coordinate system around origin one may define the angular velocity vector, Q). The rotation
introduces additional forces that may be evalued from the following

d_’iner ia d_"r‘o atin ~ - ~ = —
Y dtt L_ v C;tt 9 190 X @yorating + O x (3 x 7). (2.29)

In numerical implementationthe following Lagrange’s formula is used

Ox (A x3)=(Q-D)0—(Q-Q)z. (2.30)

which results to the following form of the Navier-Stokes equation in rotating coordinates

P(?:Jr(@V)ﬁ) =V 7+ 200 x @ = p(Q- D~ p(Q- D)0+ pf, @30

It should be noted that now also the boundary conditions need to be given in the rotational coordinate system.

2.2.7 Coupling to Electric Fields

In electrokinetics the fluid may have charges that are coupled to external electric fields. This results to an
external force that is of the form

fo=—peVo, (2.32)

where p, is the charge density and ¢ is the external electric field. The charge density may also be a variable.
More specifically this force may be used to couple the Navier-Stokes equation to the Poisson-Boltzmann
equation describing the charge distribution in electric doubly layers. Also other types of forces that are
proportional to the gradient of the field may be considered.

2.2.8 Coupling to Magnetic Fields

If the fluid has free charges it may couple with an magnetic field. The magnetic field induced force term for
the flow momentum equations is defined as

fon=Jx B, (2.33)
Here B and E are the magnetic and electric fields, respectively. The current density J is defined as

J=0o(E+1x B). (2.34)

2.3 Keywords

Constants

Gravity Size 4 Real [x y z abs]
The above statement gives a real vector whose length is four. In this case the first three compo-
nents give the direction vector of the gravity and the fourth component gives its intensity.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Navier-Stokes]
The name of the equation.

Flow Model String [Full][No convection] [Stokes]
Flow model to be used. The default is to include both convection and time derivative terms in the
model. The "No convection" model switches off the convection terms, and the "Stokes" model
both the convection terms and the (explicit) time derivative terms.
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Nonlinear System Convergence Tolerance Real
this keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations is small enough

g —wi—1|] < el|uil],

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the itera-
tion count is met, it will switch the iteration type instead.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

i —wi—1|] < el|uil],

where e is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

u; = Au; + (1 — )\)ui_l,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

i — wia|| < ef|uil],

where € is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the Navier-
Stokes equations. Usually stabilization of the equations must be done in order to succesfully
solve the equations. If solving for the compressible Navier-Stokes equations, a bubble function
formulation is used instead of the stabilized formulation regardless of the setting of this keyword.
Also for the incompressible Navier-Stokes equations, the bubbles may be selected by setting this
flag to False.

Div Discretization Logical
In the case of incompressible flow using the this form of discretization of the equation may lead
to more stable discretization when the Reynolds number increases.

Gradp Discretization Logical
Whit this form of discretization pressure Dirichlet boundary conditions can be used (and pressure
level must be fixed by such a condition). Also the mass flux is available as a natural boundary
condition.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:
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Navier—-Stokes Logical
if set to True, solve the Navier-Stokes equations.

Magnetic Induction Logical
If set to True, solve the magnetic induction equation along with the Navier-Stokes equations.

Convection String [None, Computed, Constant]
The convection type to be used in the heat equation, one of: None, Computed, Constant.
The second choice is used for thermal flows.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Boussinesq Logical
If set true, sets the Boussinesq model on.

Flow BodyForce i Real
May be used to give additional body force for the flow momentum equations, i=1, 2, 3.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow mementum equations.

Potential Force Logical
If this is set true the force used for the electricstatic coupling is activated.

Potential Field Real
The field to which gradient the external force is proportional to. For example the electrostatic
field.

Potential Coefficient Real
The coefficient that multiplies the gradient term. For example, the charge density.

Angular Velocity Real
The angular velocity 2 used for rotating coordinate systems. The size is always expected to be
three.

Initial Condition ic id
The initial codition section may be used to set initial values for the field variables. The following
variables are active:

Pressure Real

Velocity i Real
For each velocity component 1= 1,2, 3.

Kinetic Energy Real
For the k-¢ turbulence model.

Kinetic Energy Dissipation Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier-Stokes equation.

Density Real The value of density is given with this keyword. The value may be constant, or
variable. For the of compressible flow, the density is computed internally, and this keyword has
no effect.

Viscosity Real
The relationship between stress and strain velocity. When using the solidification modelling, a
viscosity-temperature curve must be given. The viscosity must be set to high enough value in
the temperature range for solid material to effectively set the velocity to zero.

Reference Temperature Real
This is the reference temperature for the Boussinesq model of temperature dependence of density.
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Heat Expansion Coefficient real
For the Boussinesq model the heat expansion coefficient must be given with this keyword. De-
fault is 0.0.

Applied Magnetic Field i Real
An applied magnetic field may be given with these keywords with i=1, 2, 3.

Compressiblity Model String
This setting may be used to set the compressibilty model for the flow simulations. Currently the
setting may be set to either Incompressible,Perfect GasandArtificialCompressible.
If perfect gas model is chosen the settings Reference Pressure and Specific Heat
Ratio must also be given. The artificial compressibility model may be used to boost conver-
gence in fluid-structure-interaction cases. The default value of this setting is Incompressible.

Reference Pressure Real
with this keyword a reference level of pressure may be given. This setting applies only if the
Compressiblity Model is set to the value Perfect Gas.

Specific Heat Ratio Real
The ratio of specfic heats (in constant pressure versus in constant volume) may be given with this
keyword. This setting applies only if the Compressiblity Model is setto value Perfect
Gas. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

For the k- turbulence model the model parameters may also be given in the material section using the
following keywords

KE SigmaK Real [1.0]

KE SigmaE Real [1.3]

KE Cl Real [1.44]

KE C2 Real [1.92]

KE Cmu Real [0.09]

Non-newtonian material laws are also defined in material section. For the power law the constant
coefficient is given by the keyword Viscosity.

Viscosity Model String
The choices are power law, carreau, cross, powell eyringandthermal carreau.
If none is given the fluid is treated as newtonian.

Viscosity Exponent Real
Parameter n in the models power law, Carreau, Cross

Viscosity Difference Real
Difference An between high and low shearrate viscosities. Ablicable to Carreau, Cross and
Powell-Eyring models.

Viscosity Transition Real
Parameter c in the Carreau, Cross and Powell-Eyring models.

Critical Shear Rate Real [0.0]
Optional parameter 7 in power law viscosity model.

Nominal Shear Rate Real [0.0]
Optional parameter in the power law viscosity model that gives the shearrate that returns the
plain newtonian viscosity.

Yasuda Exponent Real
Optional parameter y in Carreau model. The default is 2. If activated the model is the more
generic Yasuda-Carreau model.
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2. Navier-Stokes Equation 27

Viscosity Temp Offset Real
Parameter 7}, in the thermal viscosity dependence. When using Celcius instead of Kelvins this
would be 273.15, for example.

Viscosity Temp Ref Real
Parameter 7). in the thermal viscosity dependence. This should be set so that unity factor is
obtained when 1. =T, + T.

Viscosity Temp Exp Real
Exponential parameter d in the thermal viscosity dependence.

Porosity is defined by the material properties

Porous Media Logical
If this keyword is set True then the porous model will be active in the material.

Porous Resistance Real
This keyword may give a constant resistance or also a orthotropic resistance where the resistance
of each velocity component is given separately.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier-
Stokes equation are

Velocity i Real
Dirichlet boundary condition for each velocity component i= 1, 2, 3.

Pressure Real
Absolute pressure.

Normal-Tangential Velocity Real
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system using the keywords

Flow Force BC Logical
Set to t rue, if there is a force boundary condition for the Navier-Stokes equations.

Surface Tension Expansion Coefficient Real
Triggers a tangetial stress boundary condition to be used. If the keyword Surface Tension
Expansion Coefficient is given, a linear dependence of the surface tension coefficient
on the temperature is assumed. Note that this boundary condition is the tangential derivative of
the surface tension coefficient

Surface Tension Coefficient Real
Triggers the same physical model as the previous one except no linearity is assumed. The value
is assumed to hold the dependence explicitely.

External Pressure Real
A pressure boundary condition directed normal to the surface.

Pressure i1 Real
A pressure force in the given direction i= 1,2, 3.

Free Surface Logical
Specifies a free surface.

Free Moving Logical
Specifies whether the regeneration of mesh is free to move the nodes of a given boundary when
remeshing after moving the free surface nodal points. The default is that the boundary nodes are
fixed.

The k-¢ turbulence model also has its own set of boundary condition keywords (in addition to the
Dirichlet settings):
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Wall Law Logical
The flag activates the (Reichardts) law of the wall for the boundary specified. the default is 9.0.

Boundary Layer Thickness Real
The distance from the boundary node of the meshed domain to the physical wall.

Bibliography

[1] L.P. Franca and S.L. Frey. Computer methods in Applied Mechanics and Engineering, 99:209-233,
1992.

[2] L.P. Franca, S.L. Frey, and T.J.R. Hughes. Computer methods in Applied Mechanics and Engineering,
95:253-276, 1992.
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Advection-Diffusion Equation

Module name: AdvectionDiffusion

Module subroutines: AdvectionDiffusionSolver

Module authors: Juha Ruokolainen, Ville Savolainen, Antti Pursula
Document authors: Ville Savolainen, Antti Pursula

Document edited: Oct 29th 2003

3.1 Introduction

Advection-diffusion equation (sometimes called diffusion-convection equation) describes the transport of a
scalar quantity or a chemical species by convection and diffusion. The difference in the nomenclature usually
indicates that an advected quantity does not have an effect on the velocity field of the total fluid flow but
a convected quantity has. Advection-diffusion equation is derived from the principle of mass conservation
of each species in the fluid mixture. Advection-diffusion equation may have sources or sinks, and several
advection-diffusion equations may be coupled together via chemical reactions.

Fick’s law is used to model the diffusive flux. Diffusion may be anisotropic, which may be physically
reasonable at least in solids. If the velocity field is identically zero, the advection-diffusion equation reduces
to the diffusion equation, which is applicable in solids.

Heat equation is a special case of the advection-diffusion (or diffusion-convection) equation, and it is
described elsewhere in this manual.

3.2 Theory

3.2.1 Governing Equations

The advection-diffusion equation may, in general, be expressed in terms of relative or absolute mass or
molar concentrations. In Elmer, when the transported quantity is carried by an incompressible fluid (or it is
diffused in a solid), relative mass concentration ¢; = C;/p for the species 7 is used (C; is the absolute mass
concentration in units kg/m3, and p the total density of the mixture). We have used the approximation valid
for dilute multispecies flows, i.e., 0 < ¢; < 1. The advection-diffusion equation is now written as

ot

where ' is the advection velocity, D; the diffusion coefficient and \S; is a source, sink or a reaction term. The
diffusion coefficient may be a tensor.

For a compressible fluid, the concentration should be expressed in absolute mass units, and the advection-
diffusion equation reads

9C;
ot
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3. Advection-Diffusion Equation 30

For a situation, where the quantity is transported through a phase change boundary, it is convenient to
scale the absolute mass formulation by the respective solubilities of the different phases. Such a case is for
example the surface of a liquid, where the transported quantity is evaporated into a gaseous material. The
scaled concentration variable satisfies the equilibrium boundary condition on the phase change boundary
automatically, and thus the advection-diffusion equation can be solved for both materials simultaneously.
The scaling is following c

3

)
Ci,mar

where z; is the concentration of species ¢ relative to its maximum solubility in the current material in absolute
mass units. The maximum solubility has to be a constant (temperature independent) for the absolute mass
formulation of the advection-diffusion equation to remain unchanged.

It is also possible to include temperature dependent diffusion (Soret diffusion). This introduces an addi-
tional term on the right had side of the equation:

(3.3)

T =

V- (pDirVT), (3.4)

where D; r is the thermal diffusion coefficient of species i. The coefficient D; 7 has to be given in the units
m?/ K s regardless of the units used for concentration.

The velocity of the advecting fluid, ¥, is typically calculated by the Navier-Stokes equation and read in
from a restart file. All quantities can also be functions of, e.g., temperature that is given or solved by the
heat equation. Several advection-diffusion equations for different species 7 may be coupled and solved for
the same velocity field.

Given volume species sources S; can be prescribed. They are given in absolute mass units, i.e., kg/m?s.
If the equation is scaled to maximum solubility, the source term can be given in absolute mass units, or in
scaled units, S; sc = S;/Ci maz. Which is the default.

3.2.2 Boundary Conditions

For each species one can apply either a prescribed concentration or a mass flux as boundary conditions.
Dirichlet boundary condition reads as
Ci = Cip, (3.5)

or
Ci = Cip, (3.6)

depending on the units. If the concentration is scaled to maximum solubility, the Dirichlet boundary condi-
tions have to be given also in scaled values, z; = C; 4/C; maz- In all variations, the boundary value can be
constant or a function of time, position or other variables.

One may specify a mass flux 7; perpendicular to the boundary by

oC;
nen=—D;— = 3.7
Ji-1n an (3.7
In relative mass units, this may be written as
- o 801’
Ji-n= 7,0Di78 =g. (3.8)
n

Thus the units in the flux boundary condition are always kg/m?s except when the equation is scaled to
maximum solubility. In that case the default is to give flux condition in scaled units, gsc = 9/C; maw»
although the physical units are also possible.

The mass flux may also be specified by a mass transfer coefficient 3 and an external concentration Cl ¢

_p, 9

on = (Cz - Ci,ext)~ 3.9

On the boundaries where no boundary condition is specified, the boundary condition g = 0 is applied.
This zero flux condition is also used at a symmetry axis in 2D, axisymmetric or cylindrical problems.
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The equilibrium boundary condition on phase change boundaries under certain conditions is that the
relative amounts of the transported quantity are equal on both sides of the boundary,

(1) (2)
Cf _ G ; (3.10)
C( ) 0(2)

7, max 7, max

where the superscripts (1) and (2) refer to different sides of the boundary. This boundary condition is
automatically satisfied if the equation is scaled with the maximum solubilities Cl(]n)1 oz

However, the scaling causes a discontinuity into the mass flux of the species through the phase change
surface. The solver compensates this effect as long as such a boundary is flagged in the command file by the

user.

3.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-diffusion equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String [Advection Diffusion Equation Varname]
The name of the equation, e.g., Advection Diffusion Equation Oxygen.

Variable String Varname
The name of the variable, e.g., Oxygen.

Procedure File "AdvectionDiffusion" "AdvectionDiffusionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

Jur — up—1]| < €flugl],

where ¢ is the value given with this keyword, and w is either ¢; or C;.
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Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

uy, = Aug + (1= Nug_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u before
the whole system is deemed converged. The tolerance criterion is:

lJui — wi—1|] < €l|Ti|,

where e is the value given with this keyword.

Stabilize TLogical
If this flag is set true the solver will use stabilized finite element method when solving the
advection-diffusion equation with a convection term. If this flag is set to False, RFB (Residual
Free Bubble) stabilization is used instead (unless the next flag Bubbles is set to False in a
problem with Cartesian coordinate system). If convection dominates, some form of stabilization
must be used in order to succesfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. This choice may be enforced in a problem with Cartesian coordinates, but
the results might be nonsensical. Both Stabilize and Bubbles should not be set to True
simultaneously.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Advection Diffusion Equation Varname Logical
If set to True, solve the advection-diffusion equation.

Convection String
The type of convection to be used in the advection-diffusion equation, one of: None, Computed,
Constant.

Concentration Units String
If set to Absolute Mass, absolute mass units are used for concentration. Recommended for
a compressible flow. Also possible to select Mass To Max Solubility which causes the
absolute mass formulation of the equation to be scaled by the maximum solubilities of each
material.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Varname Diffusion Source Real
An additional volume source for the advection-diffusion equation may be given with this key-
word. It may depend on coordinates, temperature and other variables, such as concentration of
other chemical species, and thus describe a source, a sink or a reaction term. Given in absolute
mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the source term can be given in absolute mass units regardless of scaling.

Initial Condition ic id
The initial condition section may be used to set initial values for the concentration ¢;, C; or x;.

Varname Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity 1 Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Density Real
The value of density of the transporting fluid is given with this keyword. The value may be
constant, or variable. For compressible flow, the density of the transporting fluid is computed
internally, and this keyword has no effect.

Compressibility Model String
This setting may be used to set the compressibility model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter, the density is calculated from the
ideal gas law. Then also the settings Reference Pressure, Specific Heat Ratio
and Heat Capacity must be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Heat Capacity Real
For the compressible flow, specific heat in constant volume.

Varname Diffusivity Real
The diffusivity D given by, e.g., Oxygen Diffusivity. Can be a constant or variable. For
an anisotropic case, may also be a tensor D;;.

Varname Soret Diffusivity Real
The thermal diffusivity coefficient D given by, e.g., Oxygen Soret Diffusivity. Can
be a constant or variable.

Varname Maximum Solubility Real
The maximum solubility of the species in absolute mass units. Has to be a constant value.

Boundary Condition bc id
In advection-diffusion equation we may set the concentration directly by Dirichlet boundary condi-
tions or use mass flux condition. The natural boundary condition is zero flux condition.

Varname Real

Mass Transfer Coefficient Real

External Concentration Real
These two keywords are used to define flux condition that depends on the external concentration
and a mass transfer coefficient. This condition is only applicable to absolute mass formulation
of the equation (see keywords for Equation block).

Varname Flux Real
A user defined mass flux term in absolute mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the flux boundary condition can be given in absolute mass units regardless of
scaling. Note that this keyword does NOT affect the Dirichlet boundary condition nor the mass
transfer coefficient bc.

Varname Solubility Change Boundary Logical True
This keyword marks the boundary over which the maximum solubility changes. Has to be present
for the mass flux continuity to be preserved.

Normal Target Body Integer bd id
In a solubility change boundary, this keyword can be used to control on which side the mass flux
compensation is done. Basically, this can be done on either side but there can be some effect on
the accuracy or on the speed of the solution. Recommended is to give as normal target the body
with less dense mesh, or the direction of average species transport. If normal target body is not
specified, the material with smaller density is used.
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Advection-Reaction Equation

Module name: AdvectionReaction

Module subroutines: AdvectionReactionSolver

Module authors: Mikko Lyly, Juha Ruokolainen, Thomas Zwinger
Document authors: Thomas Zwinger

Document edited: March 3rd 2009

4.1 Introduction

Advection-reaction equation describes the transport of a passive scalar quantity, c, by a fluid. The advected
quantity is assumed not to have an effect on the velocity field. Besides a reaction rate, advection-reaction
equation may have sources or sinks. If no reaction rate and source are given, this equation may be used to
trace passive scalars through a given flow-field. If a constant source of unity value is given, the equation also
may be used to evaluate the time a passive tracer has remained in the flow field.

4.2 Theory

4.2.1 Governing Equations

The advective transport of a scalar ¢ can be written as

@—&—U-VC—FFCZS, 4.1)
ot
where ' is the advection velocity, I is the reaction rate and S is a source/sink, depending on the sign.

Due to the absence of any diffusion, (4.1) has to be solved applying the Discontinuous Galerkin (DG)
method. Elmer implements the particular method as presented in [1]. In order to evaluated jumps across
partition boundaries in parallel computations, DG implies the utilization of halo-elements for domain de-
composition (see ElmerGrid manual for details).

4.2.2 Limiters

If the scalar has a lower, ¢y, < ¢ and/or an upper limit ¢ < c¢pax limit (where the limit can be also a
function of another variable), the variational form of (4.1) becomes a variational inequality. In order to
obtain a consistent solution a method using Dirichlet constraints within the domain is applied. The exact
procedure is the following:

1. construct the linear system: Ac¢ = g, with the system matrix A and the solution vector ¢ on the

—

left-hand side and the force vector .S on the right hand side
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2. set nodes as active if the constraint is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
C = Cmax/min 18 applied

—

4. the manipulated system is solved: Ai=S
5. aresidual is obtained from the un-manipulated system: R=A:-5§
6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied.

4.2.3 Boundary Conditions
At boundaries, a Dirichlet boundary condition reads as
C = Cp. 4.2)
By nature of the applied DG method, the condition above only applies at inflow boundaries, i.e., if
-y < 0, (4.3)

where 77, is the outwards facing surface normal of the boundary.
On the boundaries where no boundary condition is specified, the boundary condition ¢ = 0 is applied
upon inflow.

4.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-reaction equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.
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Equation String [Advection Reaction Equation Variable_name]
The name of the equation, e.g., Advection Reaction Equation Tracer.

Discontinuous Galerkin Logical
needs to be set to true

Variable String Variable_ name
The name of the variable, e.g., Tracer. As the variable is a DG variable (i.e., not renderable
e.g. in ElmerPost), the user usually adds the option —-nooutput in order to avoid output in the
output files

Procedure File "AdvectionReaction" "AdvectionReactionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

llex — cr—1l] < ellekl],

where ¢ is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable ¢ before
the whole system is deemed converged. The tolerance criterion is:

llei — cial] < elleill,

where € is the value given with this keyword.

Limit Solution TLogical
Assumes the variational inequality method to apply, if set to true.

Exported Variable 1 String
in order to write the DG variable Variable_name to a for ElmerPost (non-DG mesh) read-
able variable, an exported variable with an arbitrary name (e.g., Exported Variable 1 =
Variable_name Nodal Result) has to be defined. It is then used to interpolate the DG
result to nodal values in order to display them.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies.

Convection String
The type of convection to be used in the advection-reaction equation, one of: None, Computed,
Constant.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Variable_name Source Real
defines the volumetric source for variable ¢

Initial Condition ic id
The initial condition section may be used to set initial values for the scalar c.

Variable_name Real
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Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity i Real
Convection velocity 1= 1,2, 3 for the constant convection model.

Variable_name Upper Limit Real
The upper limit, ¢, 5, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to t rue

Variable_name Lower Limit Real
The upper limit, ¢y, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to t rue

Variable_name Gamma Real
defines the reaction rate, I

Boundary Condition bc id

Variable_name Real sets the value for ¢ at inflow boundaries

Bibliography
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Linear Elasticity Solver

Module name: StressSolve

Module subroutines: StressSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: 22.04.2007

5.1 Introduction

This module computes displacement field from Navier equations. The Navier equations correspond to linear
theory of elastic deformation of solids. The material may be anisotropic and stresses may be computed as a
post processing step, if requested by the user. Thermal stresses may also be requested.

5.2 Theory
The dynamical equation for elastic deformation of solids may be written as
0%*d -
P@—V'Tzﬂ (5.1

where p is density, dis the displacement field, f given volume force, and 7 the stress tensor. Stress tensor is
given by N N N
7 = Cidklg,, — i (T —Typ), (5.2)

where ¢ is the strain and quantity C is the elastic modulus. The elastic modulus is a fourth order tensor,
which has at the most 21 (in 3D, 10 in 2D) independent components due to symmetries. In Elmer thermal
stresses may be considered by giving the heat expansion tensor (3 and reference temperature of the stress free
state Tj). The temperature field 7" may be solved by the heat equation solver or otherwise. The linearized
strains are given simply as:

e = %(fo +(Vd)T). (5.3)

5.2.1 Material laws

For isotropic materials the elastic modulus tensor may be reduced to two independent values, either the Lame
parameters, or equivalently to Youngs modulus and Poisson ratio. The stress tensor given in terms of Lame
parameters is:

T =2ue+ AV - dI — B(T — Ty)I, (5.4)
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where ;1 and A are the first and second Lame parameters respectively, (3 the heat expansion coefficient, and
1 is the unit tensor. Lame parameters in terms of Youngs modulus and Poisson ratio read

Y Y
A= —R, b=———- (5.5)
(14+ k)1 —2k) 2(1+ k)
except for plane stress situations (7, = 0) where X is defined as
Yk
A= ——. 5.6
Quantities Y and « are the Youngs modulus and Poisson ratio respectively.
For anisotropic materials, the stress-strain relations may be given in somewhat different form:
TV = Ee VvV, (5 7)

where Ty and ey are the stress and strain vectors respectively. The 6 x 6 matrix E (in 3D, 4 X 4 in 2D) is
the matrix of elastic coefficients. The stress and strain vectors are defined as

Tv = (T Ty Tz Tay Ty- TM)T (5.8)
and .
ev = (e €y €5 26y 26y, 264.) . (5.9)
In 2D the stress vector is
Tv =_(Tz Ty T2 sz)T (5.10)
and the strain vector .
ey = (ex €y €2 2eay) - (5.11)

When plane stress computation is requested 7, = 0, otherwise €, = 0. Cylindrically symmetric case is
identical to the 2D case, the components are given in the order of r, z, and ¢. The matrix F is given as input
for the anisotropic material model of Elmer.

5.2.2 Modal, harmonic and stability analysis

In addition to steady state and time dependent equations, modal, harmonic and stability analysis may be
considered. In modal analysis the Fourier transform of the homogeneous form of the dynamical equation is

-,

pwd =V -7(¢), (5.12)

or

w? /Q pPrr dQY = / 755 (@) (1) dS, (5.13)

where w is the angular frequency and q/_)' is the corresponding vibration mode.
When modal analysis of pre-stressed solids are considered, we first perform a steady analysis to compute
stress tensor, here denoted by o;;, and solve the variational equation

o Oy, O
w2/ﬂp¢)k¢)k dQ:/nJ( Yeis ( )dQ+/ 99 0%k 4 (5.14)

’L
J ('93[;z 6xj

The last term on the right-hand-side represents here the geometric stiffness due to external loads, thermal
stresses etc.
In stability analysis the buckling modes ¢ are obtained from

A / 99k 0 iy — / 723(8)ess () A, (5.15)

’L
J (‘330z 890]

where A is the margin of safety with respect to bifurcation (the current load can be multiplied by factor A
before stability is lost).
The equations may be interpreted as generalized eigenproblems and solved with standard techniques.
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5.2.3 Rayleigh damping
Damping may be taken into consideration using viscous damping or Rayleigh damping, in which it is as-
sumed that the damping matrix C' is proportional to the mass M and stiffness matrices K, or

C=aM+ K (5.16)

The identification of suitable damping coefficients o and 3 may be a difficult task.

5.2.4 Boundary conditions

For each boundary either a Dirichlet boundary condition

di = d° (5.17)
or a force boundary condition
T-n=g (5.18)

must be given. The default boundary condition is the natural boundary condition which implies that § = 0.
The user may give spring k£ or damping A coefficients on the boundary. These enable the introduction of

the force term in the form .
- od

G=kd+ \— 5.19

g + En (5.19)

which may be solved implicitely maintaining the linear form of the equation.

5.2.5 Model lumping

For linear structures it is possible to create a lumped model that gives the same dependence between force
and displacement as the original distributed model,

F=KD (5.20)

where F = (Fp Fy F. M, M, M,)T and X = (Dz Dy D, ¢g ¢y ¢.)T. However, the lumped model is not
uniquely defined as it depends on the force or displacement distribution used in the model lumping. In the
current model lumping procedure the lumping is done with respect to a given boundary. The lumped force
and momentum are then integrals over this boundary,

F; = / fidA. (5.21)
A
Lumped displacements and angles are determined as the mean values over the boundary,
D-—l/d-dA (5.22)
1T A A (2 . .

Therefore the methodology works best if the boundary is quite rigid in itself.

There are two different model lumping algorithms. The first one uses pure lumped forces and lumped
moments to define the corresponding displacements and angles. In 3D this means six different permutations.
Each permutation gives one row of the inverse matrix K . Pure lumped forces are obtained by constant
force distributions whereas pure moments are obtained by linearly varying loads vanishing at the center of
area. Pure moments are easily achieved only for relatively simple boundaries which may limit the usability
of the model lumping utility.

The second choice for model lumping is to set pure translations and rotations on the boundary and
compute the resulting forces on the boundary. This method is not limited by geometric constraints. Also
here six permutations are required to get the required data. In this method the resulting matrix equation is
often better behaving as in the model lumping by pure forces which may be a reason anonther reason to
favour this procedure.
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5.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [StressSolver]
A describing name for the solver. This can be changed but it must be given,

Procedure File "StressSolve" "StressSolver"
Name of the solver subroutine.

Eigen Analysis Logical
Modal or stability analysis may be requested with this keyword.

Eigen System Values Integer
The number of the lowest eigen states must be given with this keyword, if modal or stability
analysis is in effect.

Harmonic Analysis Logical
Time-harmonic analysis where the solution becomes complex if damping is defined. The solu-
tion algorithm assumes that the diagonal entries in the matrix equation dominates.

Frequency Real
The frequency related to the harmonic analysis. If the simulation type is scanning this may a
scalar function, otherwise it is assumed to be a vector of the desired frequencies.

Displace Mesh Logical
Should the mesh be deformed by the displacement field. The default is True except for eigen
and harmonic analysis.

Stability Analysis Logical
If set to t rue, then eigen analysis is stability analysis. Otherwise modal analysis is performed.

Geometric Stiffness Logical
If set to t rue, then geometric stiffness is taken into account in modal analysis.

Calculate Strains Logical
Computes the strain tensor of the solution.

Calculate Stresses Logical
If set to t rue the stress tensor will be computed. Also von Mises will be computed by default.

Calculate Principal Logical
Computes the principal stress components.

Calculate Pangle Logical
Calculate the principal stress angles.

Model Lumping Logical
If model lumping is desired this flag should be set to True.

Model Lumping Filename File
The results from model lumping are saved into an external file the name of which is given by
this keyword.

Fix Displacements Logical
This keyword defined if the displacements or forces are set and thereby chooces the model lump-
ing aklgorhitm.

Constant Bulk System Logical
For some type of analysis only the boundary conditions change from one subroutine call to
another. Then the original matrix may be maintaied using this logical keyword. The purpose is
mainly to save time spent on matrix assembly.
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Update Transient System Logical
Even if the matrix is defined constant it may change with time. The time may also be pseudo-time
and then for example the frequency could change with time thus making the harmonic system
different between each timestep. This keyword has effect only if the previous keyword is also
defined to be true.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Stress Analysis Logical
if set to True, solve the Navier equations.
Plane Stress Logical

If set to True, compute the solution according to the plane stress situtation 7,, = 0. Applies
only in 2D.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Stress Bodyforce 1 Real
Stress Bodyforce 2 Real

Stress Bodyforce 3 Real
The keywords may be used to give volume force.

Stress Bodyforce 1 im Real
Stress Bodyforce 2 im Real

Stress Bodyforce 3 im Real
The keywords may be used to give volume force for the imaginary part. May be applied only to
harmonic solution of the equation.

Stress Load Real
Keyword for defining stress load for the body.

Strain Load Real
Keyword for defining strain load for the body.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Displacement i Real
For each displacement component i= 1, 2, 3.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Density Real The value of density is given with this keyword. The value may be constant, or
variable.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword. The modulus may be given as a scalar for
the isotropic case or as 6 X 6 (3D) or 4 x 4 (2D and axisymmetric) matrix for the anisotropic
case. Although the matrices are symmetric, all entries must be given.

Rayleigh Damping Logical
Apply rayleig damping.
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Rayleigh Damping Alpha Real

Rayleigh Damping Beta Real
The parameters of Rayleigh damping.

Pre Stress Real
One may give prestress as an input to the solver.

Pre Strain Real
One may give prestrain as an input to the solver.

Heat Expansion Coefficient Real
If thermal stresses are to be computed this keyword may be used to give the value of the heat
expansion coefficient. May also be given as 3 x 3 tensor for 3D cases, and 2 x 2 tensor for 2D
cases.

Reference Temperature Real
If thermal stresses are to be computed this keyword may be used to give the value of the reference
temperature of the stress free state.

Rotate Elasticity Tensor Logical
For anisotropic materials the principal directions of anisotropy do not always correspond to the
coordinate axes. Setting this keyord to True enables the user to input Youngs Modulus matrix
with respect to the principal directions of anisotropy. Otherwise Youngs Modulus should be
given with respect to the coordinate axis directions.

Material Coordinates Unit Vector 1(3) Real [1 0 0]
Material Coordinates Unit Vector 2(3) Real [0 0.7071 0.7071]

Material Coordinates Unit Vector 3(3) Real [0 -0.7071 0.7071]
The above vectors define the principal directions of the anisotropic material. These are needed
only if Rotate Elasticity Tensor is set to True. The values given above define the
direction of anisotropy to differ from the coordinate axes by a rotation of 45 degrees about x-axis,
for example.

Mesh Velocity 1 Real
Mesh Velocity 2 Real

Mesh Velocity 3 Real
Keywords for giving the mesh velocity

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Displacement 1 Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Normal-Tangential Displacement Logical
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system. The first component will in this case be
the normal component and the components 2, 3 two orthogonal tangent directions.

Normal Force Real
A force normal to the boundary is given with this keyword.

Force i Real
A force in the given in coordinate directions i= 1, 2, 3.

Force i Im Real
An imaginary part of the force in the given in coordinate directions 1= 1,2, 3. Applies only to
harmonic simulation.

CSC —IT Center for Science [@)BY-nD |



5. Linear Elasticity Solver 45

Normal Force Im Real
A imaginary part of the force normal to the boundary is given with this keyword. Applies only
to harmonic simulation.

Damping Real
Introduces a force proportional to velocity with the given coefficient. Also Damping i and
Damping 1i7j may be given.

Spring Real
Introduces a force proportional to displacement with the given coefficient. Also Spring i and
Spring 1ij may be given.

Stress Load Real
Keyword for defining stress load for the boundary.

Model Lumping Boundary Logical True
When using the model lumping utility the user must define which boundary is to be loaded in
order to determined the lumped model.
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Finite Elasticity

Module name: ElasticSolve

Module subroutines: ElasticSolver

Module authors: Mikko Lyly, Juha Ruokolainen, Mika Malinen
Document authors: Mika Malinen

Document edited: Jan 8, 2014

6.1 Introduction

This chapter is concerned with the equations which describe finite deformations of elastic solids. As the
region of space occupied by the body at time ¢ is not known in advance, it is not convenient to handle the
equations in the form that expresses the field equations on the deformed configuration. Therefore the associ-
ated boundary-value problem is formulated here by employing the reference configuration which equals to
the region occupied by the body before the deformation.

6.2 Field equations

Let ) denote the reference configuration, so that the region of space occupied by the body at the time ¢ is
given by
Qt = X(Q, t),
with x(-, ¢), for fixed ¢, a deformation of 2. If we define the displacement u(p, t) of the material point p € 2
by
U(p, ﬁ) = X(p, t) 2

the basic system of field equations describing finite deformations of the body {2 may then be written as

pou —Div § = pobo7
S =FS(C), 6.1)
F=I1+Vu, C=FTF,
where pg gives the density when the body is in the reference position, the tensor field S is referred to as
the first Piola-Kirchhoff stress, and by = bo(x(p, t),t) gives the body force measured per unit mass. The

response function S(C) generally characterizes the second Piola-Kirchhoff stress as a function of the right
Cauchy-Green tensor C. It is assumed here that either

S(C) = %[tr(C’ — DI +u(C—1T) (6.2)
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or, when the neo-Hookean material is assumed,

A

[(det F)> —1]C™ + u(I — C™1), (6.3)

with A and p the Lame material parameters. We note that a common way to express (6.2) uses the strain
tensor
E=1/2(C-1), (6.4)

so that the constitutive law (6.2) may be written as
S = Mr(E)I +2ukE.

As a further option, the constitutive law may be specified by defining a material response function which
gives the first Piola-Kirchhoff stress in terms of the Cauchy stress tensor 7'. This relation is written as

S(F) = (det F)T(F,p)F~T, (6.5)

where T = T(F, p) is the response function giving the Cauchy stress.

6.3 Boundary conditions and linearization

Boundary conditions may be obtained by prescribing the displacement and surface traction on complemen-
tary parts I'y and I's of the boundary 0f2, respectively. The displacement boundary condition is simply of
the form

u=1u(p,t), (6.6)

with 7 a prescribed vector field on I'y x [0, 7.
Handling surface traction is more involved. We here assume that the surface traction s on the deformed
surface x(I'2, t) is normal to the tangent plane of the deformed boundary surface, so that

S(.%', t) = g(ac, t)m(x),

where m(z) is the unit normal on the deformed configuration, x € x(I's, t) for any ¢, and g(x, t) is a given
scalar function. This can be shown to be equivalent to specifying the values of .S such that

Sn = g(detF)F~Tn onTy x [0,T], (6.7)

where n = n(p) is the normal vector to the boundary 9 and § = G(p,t) = g(x(p,t),t). The constraint
(6.7) gives rise to a nonlinear force term which is handled in the computational solution iteratively by using
a lagged-value approximation.

To handle the resulting system computationally, the constitutive law S = S(F') has to be linearized also.
This can be done in terms of the derivative D.S(F)[U] by using the approximation

S(Fr+1) = S(Fr) + DS(Fi)[Frey1 — Fil-
We then have
S(Fpt1) = S(Fy) + FyDS(Fy,)[Fyy1 — Fr] + (Fis1 — Fu)S(Fy) 4+ o(Fp1 — Fy).
In view of Fi41 — F), = Vugy1 — Vuy, this leads to the linearization

S(Fk+1) = S(Fk) + FkDg(Fk)[Vuk+1 — Vuk} + (Vukﬂ — Vuk)g(Fk)

_ _ _ _ (6.8)
= S(Fy) — FyDS(Fy,)[Vug]) — VurS(Fy) + FiDS(Fy)[Vug1] + Vugs1.S(Fr).

In the case of (6.2) the derivative of the response function is given by

DS(F)[Vv] = gtr[FTVv + Vo F|I + u[FTVv + Vol F,
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while
DS(F)[Vv] =A[det F*tr[VoF~1C(F)*+
{p— %[det F —1][det F +1]}C(F) FT'Vv + Vo F)C(F)™!

for the neo-Hookean material obeying (6.3). In the computation of the associated tangential stiffness matrix,
which result from substituting the approximation (6.8) into the discrete version of the weak formulation of
(6.1), the following self-adjointness property

FkDg(Fk)[VukH] -Vou + Vung(Fk) -V = FkDg(Fk)[V’U] - Vugs: + VU?(F;C) - Vug+1

is also used.

6.4 Stress and strain computation

In addition to solving for the displacement, the solver can produce the strain and stress fields associated with
the solution. In this connection the strain tensor is defined by (6.4). In the stress computation the material
description of the usual Cauchy stress 7" is produced. That is, we measure the surface force per unit area in
the deformed configuration and write T'(p, t) = T'(x(p, t),t). We note that this stress is related to one of the
Piola-Kirchhoff stresses as

T = (det F)"*SFT = (det F)"'FS(C)FT. (6.9)

6.5 Keywords

Material mat id
The following keywords relate to giving the material parameters for the finite elasticity solver.

Density Real
This keyword is used for defining the density field pg corresponding to the reference configura-
tion.

Poisson Ratio Real
The values of the scalar Lame material parameters depend on the Poisson ratio as in the case of
the linear elasticity solver. The Poisson ratio is given by using this keyword.

Youngs Modulus Real
The values of the scalar Lame material parameters depend on the Youngs modulus as in the case
of the linear elasticity solver. This keyword specifies the value of the Youngs modulus.

Solver solver id

Equation String [ElasticSolver]
A describing name for the solver. This can be changed but it must be given,
Procedure File "ElasticSolve" "ElasticSolver"
Name of the solver subroutine.
Neo-Hookean Material Logical
By default the constitutive law (6.2) is employed. Switching to the neo-Hookean material model
(6.3) can be performed by giving the value True for this keyword.

Calculate Strains Logical
If the value True is given for this keyword, the strains are also computed. The strain components
are output into an ordered six-tuple as (E,, Eyy E.. Eyy Ey, Eys).

Calculate Stesses Logical
If the value True is given for this keyword, the Cauchy stress (6.9) is also computed. The stress
components are output into an ordered six-tuple in the same way as the strain.
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Body Force bf id
The body force section may be used to define volume forces.

Inertial Bodyforce j Real
This keyword may be used to give the component j of the body force field by measured per unit
mass. This considers correctly the density changes.

Stress Bodyforce j Real
This keyword may be used to give the component j of the body force field by measured per unit
volume. Note that for large displacement the density is not conserved and hence this force would
be more appropriate for some real volumetric forces, whatever they might be.

Boundary Condition bc id
Non-vanishing surface forces that are defined on the deformed configuration and have standard inter-
pretation in the deformed configuration (force per surface area on the deformed surface) can only be
given in the normal direction to the deformed surface. On the other hand, the Dirichlet conditions
(6.6) for the displacement variable of the solver can be given in the standard manner.

Normal Force Real
A surface force normal to the deformed boundary is given with this keyword.
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Mesh Adaptation Solver

Module name: MeshSolve

Module subroutines: MeshSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: April 5th 2002

7.1 Introduction

Moving boundaries are often encourtered in different types of computations, i.e. Fluid-Structure-Interaction
(FSI) problems. Moving boundaries pose the problem of mesh adaptation to the boundaries. With this solver,
instead of generating the whole mesh afresh when a boundary is moved, the current mesh nodes are moved
so that the mesh hopefully remains ’good’. This type of solution only applies to cases where the changes
in geometry are relatively small. It is, however, often cheaper in terms of CPU time to use this module in
contranst to regenerate the whole mesh.

For time dependent simulations the mesh deformation velocity is also computed. The name of this
variable is Mesh Velocity.

7.2 Theory

The equation for elastic deformation of the mesh, given displacement of the boundaries, may be written as
-V.1r=0, (7.1)

where, d is the mesh displacement field and 7 the stress tensor.
The stress tensor given in terms of Lame parameters is:

T =2us + AV - dl (7.2)

where p and A are the first and second Lame parameters respectively, and [ is the unit tensor. The linearized
strains are given as:

1, -
€= 5(Vd + (Vd)1). (7.3)
Lame parameters in terms of Youngs modulus and Poisson ratio read
Yk Y
— — A= 7.4
=0 —2x) 2(1 + r) 74

Quantities Y and « are the Youngs modulus and Poisson ratio respectively. Note that in this context the
values of the material parameters are fictional, and may be chosen to help convergence or quality of the
resulting mesh.
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7.2.1 Boundary Conditions

For each boundary a Dirichlet boundary condition

di=d’ (7.5)
may be given. Usually this the displacement is given a priori or computed by, for example, the elasticity
solvers.

7.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Mesh Update]
The name of the equation. If different from the default name Mesh Update then the following
two keywords must be defined as well.

Procedure File "NonphysicalMeshSolve" "NonphysicalMeshSolver"
Name of the solver subroutine.

Variable String
Name of the variable.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Mesh Update Logical
if set to True, solve the mesh adaptation equations.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Mesh Update i Real
Dirichlet boundary condition for each displacement component i= 1,2,3. The boundary dis-
placement may be computed some other solver. The computed displacment field then may be
used in the setting in the following way:

Mesh Update i Equals Displacement i with i=1,2,3. Including such lines in the
boundary condition setting will give the mesh update on the boundary directly from the dis-
placement solver.
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7.4 Examples
7.4.1 A Simple FSI computation using MeshSolver

In this simple computation Navier-Stokes equations are solved in the domain shown in the two pictures
below. On the left there is an inflow boundary, and on the right an outflow boundary. In the block inside the
flow domain (the mesh is not shown for the block), the elasticity equations are solved. The block is fixed at
the bottom, and is otherwise deformed by the fluid pressure and flow fields. The whole system is iterated as
follows:

e Solve fluid flow,
e Solve deformation of the block,
e Solve the fluid domain mesh with MeshSolver according to the displacements of the block,

until convergence is obtained.

Figure 7.1: The original computational mesh (up), and the mesh of the converged solution (down) of a FSI
computation.
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Elastic Linear Plate Solver

Module name: Smitc

Module subroutines: SmitcSolver

Module authors: Mikko Lyly, Jani Paavilainen
Document authors: Mikko Lyly, Peter Raback
Document created: August 26th 2002

8.1 Introduction

The linear elastic plate elements of Elmer are based on the shear deformable model of Reissner and Mindlin.The
finite element discretization is performed using the so called stabilized MITC-plate elements, which are free
from numerical locking.

8.1.1 Reissner-Mindlin model

The displacement % = (uy,uy,u,) of a Reissner-Mindlin plate (thin or moderately thick linearly elastic
body which in its undeformed reference configuration occupies the three dimensional region ) x (—%, %)
where (2 is the midsurface and ¢ the thickness) is obtained from the kinematic equations

us(@,y,2) = w(z,y) (8.3)

where 6, and 6,, are components of the rotation vector § = (6, 6,) and w is the transverse deflection of the
mid-surface, see Figure 1.
The functions w and § = (6, 0,) are determined from the condition that they minimize the total potential

energy
1

f/@:mdﬂ—&-/w-qdﬁ—/pwdﬁ (8.4)
2J)o= — Q- Q

where p is the transverse pressure load, £ = %(L@ + L@T) is the curvature of the mid-surface, v = Vw — ¢
is the transverse shear strain, m = £ : k is the bending moment, and ¢ = G - «y the transverse shear force
vector. The fourth order tensor F and second order tensor G define the bending and shear rigidities of the
cross section, respectively. For linearly elastic materials we have G - v = Gty and

E:n= K[+

- — VUV

(trs)1] (8.5)
where K = Et3/[12(1 — v?)] is the bending stiffness, E is Young’s modulus, G' shear modulus, and v
Poisson ratio. The design of the tensors £ and G for orthoropic and perforated materials is discussed in
section 8.3.
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The minimizer of the energy satisfies the equilibrium equations

V-m+q¢g=0 (8.6)
—V-qg=p (8.7)

8.1.2 Surface tension
When surface tension is present, the following term is added to the energy:

1
7/yw-7.ywd9 (8.8)
2 Jo

where 7 is a second order tensor representing the given normal force (usually 7" = T'I, where T is constant).
The equilibrium equation (8.7) is then rewritten as

V- (¢g+T -Vw)=p (3.9)

8.1.3 Boundary conditions
The following boundary conditions can be applied in the Reissner-Mindlin plate model:

e Soft fixed edge: w=0and 0 -n =0

Hard fixed edge: w =0and § =0

Soft simply supported edge: w = 0

Hard simply supported edge: w =0and § -t =0

Freeedge: m-n=0and (¢+7 -Vw) -n =0

The boundary conditions can of course be non-homogenous as well. For fixed and simply supported edges
the prescribed values of w, 6, 6 - n, and 0 - t, are taken into account on matrix level after finite element
discretization. On the free part of the edge, the non-homogenous case is trated by adding the following

terms in the energy:
/ gnw dI" + / m,, - 0.dl’ (8.10)
Tiree r

free

where g, = ¢ - n and m,, = m - n are prescribed functions.

8.1.4 Kirchhoff plates

When the thickness of the plate is small (f << diam(2)), the Reissner-Mindlin model can be considered
as a penalty approximation of the classical plate model of Kirchhoff. The Kirchhoff model is obtained from
(8.1)-(8.9) by enforcing the constraint v = 0. The governing equations are then reduced to

KAAw —TAw =1p (8.11)

8.1.5 Transient and natural mode analysis

A transient plate model is obtained by adding the interia term ptw on the left hand-side of (8.7), (8.9), and
(8.11). Here p is the density of the material. The natural vibration frequencies and mode shapes are then
obtained by taking p = 0 and solving the Fourier transformed equations.
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8.2 Finite element implementation

The direct minimization of (8.4) using the standard Galerkin finite element method fails due to the well
known numerical locking phenomena (the method is unable to deal with the Kirchhoff constraint v = 0,
which becomes valid when ¢ is small). In order to avoid locking, Elmer utilizes the so called SMITC
(Stabilization and Mixed Interpolation of Tensorial Components) elements, which are known to be optimally
convergent and work well under all conditions [4].

The linear element of the SMITC-family was first introduced by Brezzi, Fortin and Stenberg in [2]. The
method is defined by replacing the shear energy term in (8.4) by the following numerical modification:

/ 2, 4, 4 (8.12)
Q

where ) is called the reduced shear strain (sometimes also referred to as the assumed or substitute shear)
and g, = (t* + ah?)7'G - v, the reduced shear force. Here / is the mesh size (the diameter of the biggest
element) and o« > 0 is a numerical stabilization parameter (typically o = 0.15).

The reduced shear y L is defined elementwise such that

Tnk = (ax — bry,ax + cxx) (8.13)

for any element K. The parameters ax, bx, and cg, are determined from the conditions

/(l—lh)-éds=0 (8.14)
E

for every edge E of K. Here ¢ is the counterclockwise tangent to E.

It has been shown [3] that the linear SMITC-element is equivalent to the T3BL (Triangle, 3 nodes,
Linked Interpolation) element of Xu, Auricchio and Taylor [8, 1], the anisoparametrically interpolateed
MIN3 element of Tessler and Hughes [7], and the TRIA3 element of MacNeal [5]. We refer to [3] for a
more detailed discussion.

8.3 Elastic parameters for perforated plates

In microelectromechanical systems the plate stuctures are often perforated in order to reduce the squeezed-
film damping effect. This has also an effect on the elasticity equation. If there are so many holes that it is
not feasible to treat them individually their effect may be homogenized over the whole structure. In practice
this means that the original elastic parameters are replaced by effective parameters that take into account the
holes. This method was reported by Pedersen et al. [6] and implemented into the solver by Jani Paavilainen.

In the homogenization effective parameters for an ortotropic plate are defined so that the unperforated
model approximates the perforated plate. The basic idea is to set the analytical expressions of the deforma-
tion energies of the perforated and unperforated plates equal. This method is inherently limited to simple
geometries where analytical expressions may be found. So far, only square holes have been implemented in
the solver.

The unit cell of a perforated plate may be assumed to consist of one small square plate with side b — 2a,
and of four beams of length a as shown in Figure 8.1. Using approximate formulas an analytical formula for
the deformation energy of the perforated plate is obtained. This has to be equal to the deformation energy of
an unperforated ortoropic membrane. From this condition we get a set of equations from which the effective
parameters may be solved.

The elasticity tensor has three independent components, C1; = Cas, C1o = Caq, and Cyy. The expres-
sions for these are [6],

_ _E [blb—2a) | a(b—2a)?
Cn = Cxn= 12 { =2 b (8.15)
vE(b— 2a)
Cia = Cq = 0 =07 (8.16)
B E 12Ka(b — 2a)
Cu = wEiiy {2b(b ~2a) + bhs} . (8.17)
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basic
element

2a

Figure 8.1: The basic element of the perforated plate consisting of five rectangular beams

where K is a constant!, defined as

|

The midplane tension of the perfomarated plate may be reduced to lateral stresses of the ortotropic plate

by a simple scaling,
T =+/(1-4a%/b?) Ty, (8.19)

where is the tension 7} of the perforated plate. Using this reduced tension and the modified material param-
eters of equations (8.15), (8.16) and (8.17) the ortoropic plate mimics the behavior of the perforated plate
when looking at macroscopic quantities. However, the model is not suitable for approximating maximum
stresses around the holes, for example.

(1—-0.632522) (b—2a)3h, josh >b—2a

(1-063525) (b= 20)h%, josh < b~ 2a. (8.18)

W= Wl

8.4 Keywords

Solver solver id

Equation String SmitcSolver

Procedure File "Smitc" "SmitcSolver"
The procedure which inludes the linear plate model.

Variable String Deflection
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 3
Degrees of freedom for the deflection. The first degree is the displacment and the two following
ones are its derivatives in the direction of the coordinate axis.

Eigen Analysis Logical
Also the eigenvalues and eigenmodes of the elasticity equation may be computed. This is done
automatically by calling a eigensolver after the original equation has been solved. The default is
False.

'In article [6] there is an error in the definition of K. In the article there is an expression (b — 2a)/h3, which would make K
discontinuous at h = b — 2a.
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Eigen System Values Integer

If the eigenvalues are computed this keyword gives the number of eigenmodes to be computed.
The lowest eigenvalues are always solved for.

Hole Correction Logical

If the plate is perforated the holes may be taken into account by a homogenized model. This is
activated with this keyword. The default is False.

Procedure File "Smict" "SmitcSolver"
Material mat id

Density Real
Density of the plate.

Poisson ratio Real
Youngs modulus Real
The elastic parameters are given with Youngs modulus and Poisson ratio.
Thickness Real
Thickness of the plate.
Tension Real
The plate may be pre-stressed.
Hole Size Real
Hole Fraction Real
If Hole Correction is True the solver tries to find the size and relative fraction of the
holes. If these are present the hole is assumed to be a square hole.

Boundary Condition bc id

Deflection i Real
Dirichlet BC for the components of the deflection, i=1,2,3.

Body Force bf id

Pressure Real

Possibility for a body forces. For coupled systems there is a possibility to have up to three forces.
The two others are then marked with Pressure Band Pressure C.

Spring Real
The local spring which results to a local force when multiplyed by the displacement.
Damping Real

The local damping which results to a local force when multiplyed by the displacement velocity.
The spring and damping may also be defined as material parameters.
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9.1 Introduction

This module solves the Helmholtz equation, which is the Fourier transform of the wave equation. In addition
to the basic equation the solver may take into consideration variable density, background convections field,
simple damping and special boundary conditions with other time-harmonic solvers.

9.2 Theory

For example, sound propagation in air is fairly well described by the wave equation:
1 9%
S -5 — Vp=0. 9.1
2o p (CRY

When linear the equation may be written in frequency space as
KP4+ V2P =0, 9.2)

where £k = w/c. This is the Helmholtz equation. The instantaneous pressure may be computed from the
given field P: _
p(t) = R(Pe™') = R(P) cos(wt) — I(P) sin(wt), 9.3)

where ¢ = v/—1 is the imaginary unity.
In Elmer the equation has an added term which is proportional to first time derivative of the field, where-
upon the equation becomes
(k* —ikD)P + V?P = 0, (9.4)

where D is the damping factor.

9.2.1 Boundary Conditions

The usual boundary condition for the Helmholtz equation is to give the flux on the boundary:

VP.i=g, 9.5)
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also Dirichlet boundary conditions may be set. The Sommerfeldt or far field boundary condition is as follows

VP i+ Yp=o, (9.6)
Z
where the complex-valued quantity Z may be defined by the user. It is noted that incoming and outgoing
waves may be approximated by setting Z = =c, respectively.

A special kind of flux condition is one with a given harmonic velocity field that is obtained from a
harmonic solution of a flow or structure equation. When the velocity field ¥’ is given then the flux is obtained
from

g=1iwpt-n 9.7

where p is the fluid density. If harmonic displacement is given instead a further term iw appears in the
equation.

9.3 Keywords

Simulation
This section gives values to parameters concerning the simulation as whole.

Frequency Real
Give simulation frequency in units of 1/s. Alternatively use the Angular Frequency key-
word.

Angular Frequency Real
Give simulation frequency in units of 1/rad. Alternatively use the Frequency keyword.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that for the Helmholtz equation ILUT
preconditioning works well.

Equation String [Helmholtz]
The name of the equation.

Procedure File ["HelmholtzSolve" "HelmholtzSolver"]
This keyword is used to give the Elmer solver the place where to search for the Helmholtz
equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Bubbles Logical
If set to True this keyword activates the bubble stabilization.

Use Density Logical
Historically the solver was able to solve only cases with constant density when it may be elimi-
nated. If the density is however not constant this flag must be set True.

Velocity Variable Name String
If there is a Flow Interface then the name of the harmonic velocity variable may be speci-
fied. The default is F1ow. Note that normal real valued velocity field is not suitable.

Displacement Variable Name String
If there is a Structure Interface then the name of the harmonic displacememt variable
may be specified. The default is Displacement. Note that normal real valued displacement
field is not suitable, its complex valued eigenmode however is.

Displacement Variable Eigenmode Integer
If eigenmode is used for the interface this keyword is used to specify the number of the mode.
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Displacement Variable Frequency Logical
If eigenmode is used for the interface this keyword may be used to choose the frequency to be
the frequency of the computed eigenmode.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Helmholtz Logical
If set to True, solve the Helmholtz equation, the name of the variable must match the Equation
setting in the Solver section. Alternatively use the Active Solvers keyword.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Pressure i1 Real
For each the real and imaginary parts of the solved field 1= 1, 2.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Helmholtz equation.

Sound Speed Real
This keyword is use to give the value of the speed of sound.

Sound Damping Real
This keyword is use to give the value of the damping factor D in equation 9.4.

Density Real
If sound density is varying the density must be specified and its use must be enforced by the Use
Density keyword.

Convection Velocity i1 Real
If the pressure field is convected by a background velocity field (as in the Doppler effect) then
this keyword is used to give the velocity field.

Body Force bf id

Pressure Source i Real
The pressure sources of the real (¢ = 1) and complex (: = 2) parts. The use of this is rather
seldom.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmbholtz equations are

Pressure i Real
Dirichlet boundary condition for real and imaginary parts of the variable. Here the values i= 1, 2
correspond to the real and imaginary parts of the unknown field.

Wave Flux 1,2 Real
Real and imaginary parts of the boundary flux. Here the values 1= 1,2 correspond to the real
and imaginary parts of the boundary flux.

Wave Impedance 1,2 Real
This keyword may be used to define the real and imaginary parts of the quantity Z in (9.6). Here
the values i= 1, 2 correspond to the real and imaginary parts of Z.

Flow Interface Logical
Use harmonic velocity field to set the flux.
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Structure Interface Logical
Use harmonic displacement field to set the flux.
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in the frequency domain
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Module authors: Mika Malinen
Document authors: Mika Malinen
Document edited: Aug 14, 2012

10.1 Introduction

The basic acoustic equations such as the Helmholtz equation, which is frequently taken as the starting point
in acoustic analyses, are based on the assumption of lossless flow, i.e. the effects of viscosity and heat
conduction are neglected. These effects are significant, however, in thin zones near a solid boundary. In this
chapter, a system of acoustic field equations taking into account the effects of viscosity and heat conduction
is described. Consideration is confined to the time-harmonic solution of these equations.

10.2 Mathematical model

The acoustic field equations may be derived using the general principles of continuum mechanics and supple-
menting these equations by suitable constitutive equations applicable for the fluid flow. Here the linearized
versions of such equations are used to derive an approximate system of field equations appropriate to the
small-amplitude acoustics problem.

In the following the velocity, density, pressure and temperature fields associated with the flow are denoted
by ¥, p, p and T, respectively. The notations pg, pg and Ty are used for the values of the density, pressure
and temperature at the equilibrium state.

10.2.1 The field equations

Consider the acoustic equations based on the linearized equation of motion, the constitutive equation relating
the stress to the motion for a Newtonian fluid, the kinematic relation, the linearized continuity equation and
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the linearized energy equation

ov _ R
Pog, = V-G + pob,
G =—pl + \(V - 9)I +2uD(?),
D(7) = (Vi + ViT), (10.1)
dp
a - _POV %)
du

po gy = KAT — poV - U+ poh.

Here 7 is the stress tensor, b is the body force (per unit mass), A and p are parameters characterizing the
viscosity of the fluid, u is the specific internal energy,  is the heat conductivity and & is the internal supply
of heat.

We supplement the system (10.1) by suitable equations of state assuming that the properties of the
medium are expressible as functions of two state variables, say the temperature and density. We denote
the specific entropy (entropy per unit mass) and its equilibrium value by s and sy and assume that the rela-
tion

du = Tyds + (po/p3)dp (10.2)
is valid. In addition, we approximate the equations which give the changes of pressure and specific entropy
in terms of the changes of the state variables by

_ ('7 - 1)pOCV (’Y - 1)CV
P—Dpo= T(T—TO)‘F TﬁQ(P—PO) (10.3)
and C Cy( 1)
_ v vy — _
5— 80 = 2 (T —1Tp) “TopeB (p = po), (10.4)

where C'y is the specific heat at constant volume (per unit mass), -y is the ratio of the specific heats at constant
pressure and constant volume and /3 is the coefficient of thermal expansion defined by

1,0
8= _;(i)p_ (10.5)

Confining consideration to the time-harmonic case, the solutions of the primary unknowns are assumed
to be of the form
Uz, t) = U(x) exp(iwt),
p(x,t) = po + p(x) exp(iwt), (10.6)
T(x,t) = To + T(z) exp(iwt),
where w is the angular frequency. By the substitution of (10.6), the system of field equations based on

(10.1)—(10.4) may be reduced to a system where the only unknown fields are the amplitudes ¥(z) and T'(x)
of the disturbances of the velocity and temperature fields. The reduced system may be written as

] (v — 1 -
iwpoir+ D= DOV Gr (DO G G A = po,
BT wTpB? (10.7)
-1 :
—kAT 4+ iwpgCy T + %V - U = poh.

It is noted that after the solution of the velocity and temperature the amplitudes p(z) and p(z) of the distur-
bances of the pressure and density fields can readily be obtained from the relations

—1)C :
p= (v % V'OO(T—i—LV-U),
Ao wp (10.8)
p=2v.5
w
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For numerical approximation the system (10.7) is rewritten as a mixed problem; to motivate this, see [2].
The mixed formulation is written as

T — iV — iV +ieV(V - T) + ieAT = —(i/w)b,

i€ A 1 n 1 _ih
(—D08~ T A—1 T 1tinken”  BTow?’ (10.9)
- - vk?
W 1+i’yk2677¢ ’

where ¢ is an auxiliary unknown, 7 is the scaled temperature defined by

wf
and o N
P Y (10.11)
c pow K o
with c the adiabatic sound speed defined by the relation
ToB%c = v(y —1)Cy. (10.12)

It should be noted that although the solver of the acoustic equations is based on the formulation (10.9), the
solver overwrites the approximations of 7 and ¢ by the unscaled temperature and the pressure, which may
be expressed as
1
1+ diyk2en
It is assumed that 3 = 1/T}. This value is obtained by evaluating the coefficient of thermal expansion
for the equilibrium values of the state variables in the case of an ideal gas.

p = pow(T + o). (10.13)

10.2.2 Boundary conditions

Suitable boundary conditions must be adjoined to the field equations (10.1). In a usual manner, one may
specify any component of the velocity vector on the boundary. Alternatively, if the component of the velocity
vector is not specified at a point on the boundary, the corresponding component of the surface force vector
may be prescribed. Similarly, as a boundary condition for the energy equation one may specify either the
disturbance of the temperature or zero heat flux (the default boundary condition) on the boundary.

Specifying two impedances on the boundary provides an alternative way of prescribing boundary con-
ditions in the normal direction to the boundary. Firstly, one may specify the specific acoustic impedance Z
which is defined to be the ratio of the normal component of the surface force vector (which equals to the
pressure in the case of a nonviscous Newtonian fluid with no bulk viscosity) to the normal component of the
velocity vector at a point on the boundary, i.e. one may specify

n-on

7 =
v

— )

where 77 is the outward unit normal vector to the boundary. Secondly, one may prescribe the ratio of the heat
flux to the disturbance of the temperature at a point on the boundary by specifying

Zr = VT (z) 7
T(x)
For example, outgoing waves may be approximated by setting Z = —pgc and Zp = —iw/c on the outflow

boundary.
Slip boundary conditions may also be used. The velocity slip boundary condition relating the tangential
component of the surface force vector to the tangential velocity jump at a point on the boundary is written in

the form
Co

(2('7 - 1)CV(T0 + Tw)

o v ) 2p0(5 = 5, - D),

n-t=

Qll
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where # is a tangent vector to the boundary, ¢, is the momentum accommodation coefficient and T, and
¥, are the reference wall temperature and velocity. Here the reference wall temperature is defined to be the
deviation of the wall temperature from the equilibrium temperature 7. The similar boundary condition for
the heat flux is given by

7CT(’Y + 1) (2(’}/ — 1)Cv(TO + Tw)

VT i =
YT T ) 71'

)1/2POCV(T - Tw)v

where cr is the energy accommodation coefficient.

10.3 The use of block preconditioning

The finite element approximation of the system (10.9) leads usually to large linear systems which have to
be solved using preconditioned iterative methods. The general preconditioners available in Elmer may not
always work satisfactorily well when the size of the system becomes larger and larger. To facilitate the
solution of large problems, a problem-specific strategy for solving the linear systems that arise from the
discretization of (10.9) has been developed. We describe the essential features of this solution method in this
section; for a full description see [1].

The solution strategy discussed here is based on using nested GCR iterations in combination with a
special block-preconditioner. Given the linear system

KU=F

the standard GCR method generates a sequence of improving approximations such that each iterate U(*)
minimizes || — KU®)|| over the so-called Krylov subspace. The standard algorithm can be modified
easily so that the update direction can be chosen flexibly. Obviously, an optimal update direction would be
given by the current error e(*) = U — U To find an approximation to the error one may apply an iterative
method to

Ke®) = (ko)

where r*) = F — KU®) is the residual. The preconditioned GCR algorithm which employs this idea to
find the update direction can be described as follows:

Form an initial guess U (%)
r0 = _ gy
k=0
while (Stopping criterion is not met)
Solve K s(+1) = (k) jteratively using at most m iteration steps
o) — gkt
doj=1,k
o) = y(k+D) ) (0) p(kt1) 5 ()
s+ = g(k+1) _ < () y(k+1) 5 ()
end do
B — (k1) /|| (k4D |
glk+1) — 5(k+1)/”v(k+1)|
U+ Z g4 < k1) () 5 g(k+1)
1) (B (o4) g (R) 5 (D)
k=k+1

end while

Here the inner product and norm are defined by < v,r >= - r and ||v|| =< v,v >'/2. The GCR iteration
steps used to update the approximation of U are referred to as outer iterations, while the iteration steps of
the preconditioning iterative method used for solving the new search direction s(**+1) are referred to as inner
iterations.
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Here the GCR algorithm is also used as the inner iterative method. In connection with the inner iterations
a special block-preconditioner is used. The preconditioning is done by solving approximately the block-
triangular system of the form

*

A B B>’< O Sy Ty
0 ¢ D 0 s | | rr
0 E G H||se| |rs]|’ (10.14)
0o 0 0 M " ro

where s,, s, and s are update directions for the errors of v, 7 and ¢. In addition, 7 is an auxiliary unknown
which has been introduced so as to handle the boundary conditions of the preconditioner is a consistent way.
In practice, an approximate solution of (10.14) is constructed by applying iterative methods to the systems
of the type

My =1y, (10.15)
C D sr | | T
[EGH%}_[%} (1010
and
As, = Ty, (10.17)

where 7y and 7, are modified right-hand sides the computation of which requires the evaluation of certain
matrix-vector products. The special solver discussed hence requires that iterations are performed on three
levels.

One of the key ideas in the nested application of the GCR algorithm is that the outer iteration can be
made rapidly convergent. Consequently the optimality of the outer iteration need not be sacrificed by using
such techniques as restarting or truncation. A few inner iterations are usually enough to produce a useful
reduction in the outer iteration residual. Therefore the maximum number of iterations the inner iterative
method may take need not be large. We have found that limiting the number of inner iterations by taking
m = 5 (this is the default value) or m = 10 leads often to an efficient method. In addition to specifying
the maximum number of inner iterations, the user can control the residual reduction in the outer iteration
process by specifying the error tolerance ;e SO that the inner GCR iteration is stopped if

75 — KD < G|, (10.18)

where 5(*+1) is the approximation to s**1). The default value of &i,pe, is 0.1.

Ideally a mild stopping criterion should be used in the solution of the linear systems of the type (10.15)-
(10.17) which arise in the block-preconditioning of the inner iteration. The iterative solution of (10.15) being
a cheap operation, the overall cost of the block-preconditioning is essentially determined by the solution of
the systems of the type (10.16) and (10.17). These systems are solved using the preconditioned BiCGStab(l)
method. In this connection the Jacobi and incomplete LU factorization preconditioners can be applied.

10.4 Utilities

The dissipative acoustics solver may be used in resolving the acoustic impedance of a system. The value of
the impedance defined by
I s, P ds

J s, - (—1) dS
may automatically be calculated for a given boundary .S;. Here this impedance will be referred to as the
specific acoustic impedance of the surface (.5;).

The acoustic impedance is divided into two parts, a part in phase with velocity and a part out of phase
with velocity. The value of the impedance z; is meaningful only when the velocity on the input boundary is
considered. It is though possible to calculate the response over an other boundary S; and to compare it to
the input velocity, i.e. one may compute

(10.19)

Z; =

L fsjpdS
Yo fsizT(—T_i) ds’

This impedance is here called the cross specific acoustic impedance.

(10.20)

CSC - IT Center for Science (cc



10. The linearized Navier-Stokes equations in the frequency domain 68

10.5 Keywords

The following keywords are particularly related to the acoustics solver.

Simulation

Angular Frequency Real
This keyword is use